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Hopf-Galois Structures on Galois Extensions

Let L/K denote a finite Galois extension of fields with group G .

The group algebra K [G ], with its usual action on L, gives a

Hopf-Galois structure on the extension L/K .

There may be other Hopf algebras giving Hopf-Galois structures on

the extension.

It might be interesting to make comparisons between them.

Let Perm(G ) be the group of permutations of G . Define an

embedding λ : G → Perm(G ) by left translation:

λ(g)(h) = gh for g , h ∈ G ,

and an action of G on Perm(G ) by conjugation via λ:

gn = λ(g)nλ(g−1) for g ∈ G , n ∈ Perm(G ).
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Greither-Pareigis Theory

Theorem (Greither and Pareigis)

There is a bijection between regular subgroups N of Perm(G )

normalized by λ(G ) and Hopf-Galois structures on L/K.

The Hopf algebra giving the Hopf-Galois structure corresponding to

the subgroup N is

H = L[N]G = {z ∈ L[N] | gz = z for all g ∈ G} .
The action of an element of such a Hopf algebra on an element t ∈ L

is given by (∑
n∈N

cnn

)
· t =

∑
n∈N

cnn
−1(1G )[t].
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The Canonical Nonclassical Structure

We can also define another embedding ρ : G → Perm(G ) by right

translation:

ρ(g)(h) = hg−1 for g , h ∈ G .The groups λ(G ) and ρ(G ) are regular subgroups of Perm(G ) and are

normalized by λ(G ), so they correspond to Hopf-Galois structures on

L/K .

The action of λ(G ) on ρ(G ) by conjugation is trivial, so we have:

L[ρ(G )]G = LG [ρ(G )] = K [ρ(G )],

and this subgroup corresponds to the classical structure.

If G is abelian then λ(G ) = ρ(G ), but if G is nonabelian then the

subgroup λ(G ) corresponds to a canonical nonclassical Hopf-Galois

structure on L/K . In this case the action of λ(G ) on itself by

conjugation is not trivial, so we have

L[λ(G )]G 6= K [λ(G )].
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Hopf-Galois Module Theory

Now suppose that L/K is an extension of local or global fields.

Definition

If L/K is H-Galois for some Hopf algebra H then we define the Associated

Order of OL in H by

AH = {h ∈ H | h · x ∈ OL for all x ∈ OL}.

What can we say about the structure of OL as an AH -module?

Each Hopf algebra that gives a Hopf-Galois structure on L/K provides

a different description of OL.

There exist wildly ramified extensions of p-adic fields L/K for which

OL is not free over AK [G ] but is free over AH for some other Hopf

algebra H giving a nonclassical Hopf-Galois structure on L/K .
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Hopf-Galois Module Theory

Suppose that L/K is H-Galois for H = L[N]G .

The OK -order OL[N]G is contained in the associated order AH of OL.

If L/K is wildly ramified then OL[N]G ( AH , but if L/K is at most

tamely ramified then it is possible that OL[N]G = AH :

Theorem (PT)

Suppose that L/K is a finite Galois extension of p-adic fields with group

G , that p - [L : K ], and that N is abelian. Then OL[N]G is the unique

maximal order in H = L[N]G and OL is a free OL[N]G -module.

At this conference last year I asked: Can we remove the hypothesis

that N is abelian?
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Hopf-Galois Module Theory

Conjecture

Suppose that L/K is a finite Galois extension of p-adic fields with group G

and that p - [L : K ]. Then OL[N]G is a maximal order in H = L[N]G and

OL is a free OL[N]G -module.

Counterexample

Let p be a prime that is congruent to 2 modulo 3, so that the field

Qp does not contain a primitive cube root of unity.

Let L be the splitting field of x3 − p over Qp. Then L/Qp is tamely

ramified and Galois with group G ∼= D3.

Since G is nonabelian, L/Qp has a canonical nonclassical Hopf-Galois

structure, corresponding to the regular subgroup λ(G ) of Perm(G ).

Let Hλ = L[λ(G )]G denote the corresponding Hopf algebra.

Then OL is free over its associated order Aλ in Hλ, but OL[N]G ( Aλ.
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Main Results

Let L/K be a finite Galois extension of local or global fields in

characteristic 0 or p with nonabelian Galois group G .

Denote by Hλ the Hopf algebra giving the canonical nonclassical

Hopf-Galois structure on L/K .

Theorem

A G -stable fractional ideal of L is free over its associated order in K [G ] if

and only if it is free over its associated order in Hλ.

Theorem

An element x ∈ L generates L as K [G ]-module if and only if it generates L

as an Hλ-module.
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Consequences of the main results

Corollary

If L/K is a tame nonabelian Galois extension of local fields then any

fractional ideal of L is free over its associated order in Hλ.

Corollary

If L/K is a tame nonabelian Galois extension of global fields then OL is

locally free over its associated order in Hλ.

Corollary

If L/Q is a tame nonabelian Galois extension whose degree is not divisible

by 4 then OL is free over its associated order in Hλ.
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Consequences of the main results

Corollary

If L/K is a nonabelian Galois extension of p-adic fields which is weakly

ramified then OL is free over its associated order in Hλ.

Corollary

If L/K has has simple nonabelian Galois group then the extension admits

only the classical and the canonical nonclassical Hopf-Galois structures,

and a G -stable fractional ideal B is either free over its associated order in

both of these or in neither of them.

Corollary

If L/K is a nonabelian extension of local fields which has a valuation

criterion for normal basis generators then it also has a valuation criterion

for Hλ-generators.
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Sketch of the Proof in one direction

Suppose that OL is free over AK [G ], with generator x ∈ OL.

Let a1, . . . , an be an OK -basis of AK [G ].

For each i , write xi = ai (x). Then the xi are an OK -basis of OL.

Note that x also generates L as a K [G ]-module, so the set

{σ(x) | σ ∈ G} is a K -basis of L.

Let {σ̂(x) | σ ∈ G} be the dual basis with respect to the trace form.

σ̂(x) = σ(x̂)

for each σ ∈ G . So

TrL/K (σ(x̂)τ(x)) = δσ,τ

for σ, τ ∈ G .

Paul Truman Canonical Nonclassical Structure 11 / 16



Sketch of the Proof in one direction

For each i , define an element hi ∈ L[λ(G )] by

hi =
∑
g∈G

∑
ρ∈G

ρ(xi )g
−1ρ(x̂)

λ(g).

It turns out that each hi ∈ L[λ(G )]G , so it makes sense to let each hi
act on elements of L according to the formula∑

g∈G
cgλ(g)

 · t =
∑
g∈G

cgλ(g)−1(1G )(t)

=
∑
g∈G

cgg
−1(t).

We will show that hi · x = xi and that each hi ∈ Aλ, the associated

order of OL in Hλ.
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Sketch of the Proof in one direction

hi · x =

∑
g∈G

∑
ρ∈G

ρ(xi )g
−1ρ(x̂)

λ(g)

 · x
=

∑
g∈G

∑
ρ∈G

ρ(xi )g
−1ρ(x̂)

 g−1(x)

=
∑
ρ∈G

ρ(xi )

∑
g∈G

g−1ρ(x̂)g−1(x)


=

∑
ρ∈G

ρ(xi )TrL/K (ρ(x̂)x)

=
∑
ρ∈G

ρ(xi )δρ,1

= xi .
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Sketch of the Proof in one direction

We still need to show that each hi is in Aλ.

It is sufficient to show that hi · xj for any i and j .

It turns out that for z ∈ Hλ and σ ∈ G we have

z · σ(t) = σ(z · t) for all t ∈ L,

so for any i and j we have

hi · xj = hi · aj(x)

= aj(hi · x)

= aj(xi ),

and this lies in OL since xi ∈ OL and aj ∈ AK [G ].

So each hi ∈ Aλ and the set {hi · x | i = 1, . . . , n} is an OK -basis of

OL. Therefore OL is a free Aλ-module.
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What about the Converse?

We can use the same ideas to show that if OL is a free Aλ-module

then it is a free AK [G ]-module.

In this case we need to know that if and element x ∈ L is an

Hλ-generator of L then it is a K [G ]-generator of L, so that we can

consider the dual basis with respect to the trace form.

For this, we need the second of the main theorems.
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Further Questions

Does assuming that one of AK [G ] or Aλ is a Hopf order imply that

the other is too? This might be particularly interesting for tame

extensions, where AK [G ] = OK [G ] which is certainly a Hopf order.

Does assuming that one of AK [G ] or Aλ is a Maximal order imply that

the other is too?

In the tame case, can we find a criterion for Aλ = OL[λ(G )]G?
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